Q. Sum of infinite terms A, AR, AR2, AR3,…. is 15. If the sum of the square of these terms is 150, then find the sum of AR2, AR4, AR6, ⋯.
Answer:
½
Solution:
A + AR + AR2 + ⋯ = 15
⇒A/(1-R) = 15 ⋯(i)
Now, A2 + A2 R2 + A2 R4 + ⋯ = 150
⇒A2/(1-R2 ) = 150
⇒(A⋅A)/((1-R)(1 + R)) = 150
⇒15A/(1 + R) = 150
⇒A = 10(1 + R)⋯(ii)
Solving (i) & (ii):
10(1 + R)/(1-R) = 15
⇒R = 1/5
So, A = 12
AR2 + AR4 + AR6 + ⋯ = (AR^2)/(1-R2 ) = (12⋅1/25)/(1-1/25) = 1/2